metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang,^a Rui-Qin Fang,^a Hai-Shun Wu^a and Seik Weng Ng^b*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.004 Å R factor = 0.030 wR factor = 0.052 Data-to-parameter ratio = 11.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Diaquabis(1*H*-imidazole-4,5dicarboxylato- $\kappa^2 N^3$, O^4)cadmium(II)

The water-coordinated Cd atom in the title compound, $[Cd(C_5H_3N_2O_4)(H_2O)_2]$, lies on an inversion centre and is *N*,*O*-chelated by imidazole-4,5-dicarboxylate anions, defining an octahedral environment. The structure is isomorphous with the Mn analogue [Ma, Chen, Chen & Liu (2003). *Acta Cryst.* C**59**, m516–m518].

Received 17 November 2003 Accepted 24 November 2003 Online 6 December 2003

Comment

Ma *et al.* (2002) described the structure of diaquabis[imidazole-4,5-dicarboxylato(1–)]manganese(II) as a three-dimensional network of $[Mn(C_5H_3N_2O_4)(H_2O)_2]$ molecules held together by hydrogen-bonding interactions involving the carboxylic acid, amino and water H atoms. The anion behaves as a chelating unit that binds through the tertiary amino and negatively charged carboxyl atoms. The present centrosymmetric Cd analogue, (I) (Fig. 1) is isomorphous, the two compounds having nearly identical unit-cell parameters.

Experimental

The pH of a solution of cadmium diacetate dihydrate (0.20 g, 1 mmol) and imidazole-4,5-dicarboxylic acid (0.23 g, 1 mmol) in water (7 ml) was adjusted to 7 with 4 M sodium hydroxide. The solution was then transferred into a 15 ml Teflon-lined stainless-steel bomb and heated at 433 K for 120 h. The bomb was cooled slowly to room temperature to afford well formed prismatic crystals of (I) in about 50% yield.

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved A view of the centrosymmetric molecule of (I), with displacement ellipsoids drawn at the 50% probability level [symmetry code: (i) 1 - x, 1 - y, 1 - z].

Crystal data

$[Cd(C_5H_3N_2O_4)(H_2O_2)]$
$M_r = 458.62$
Monoclinic, $P2_1/n$
a = 5.0407 (7) Å
<i>b</i> = 23.036 (3) Å
c = 6.6601 (9) Å
$\beta = 111.569 \ (2)^{\circ}$
$V = 719.2 (2) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART CCD area-detector	1571 independent reflections
diffractometer	1127 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.055$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.492, \ T_{\max} = 0.752$	$k = -29 \rightarrow 16$
4035 measured reflections	$l = -8 \rightarrow 8$

 $D_x = 2.118 \text{ Mg m}^{-3}$

Mo $K\alpha$ radiation Cell parameters from 2270

reflections $\theta = 3.4-27.0^{\circ}$ $\mu = 1.59 \text{ mm}^{-1}$ T = 298 (2) KBlock, colourless $0.32 \times 0.26 \times 0.18 \text{ mm}$

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.030$	$w = 1/[\sigma^2(F_o^2) + (0.0158P)^2]$
$wR(F^2) = 0.052$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.74	$(\Delta/\sigma)_{\rm max} = 0.001$
1571 reflections	$\Delta \rho_{\rm max} = 0.87 \ {\rm e} \ {\rm \AA}^{-3}$
135 parameters	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-N1 Cd1-O1	2.260 (2) 2.326 (2)	Cd1–O1W	2.342 (2)
$N1-Cd1-N1^{i}$ N1-Cd1-O1 $N1-Cd1-O1^{i}$ N1-Cd1-O1W $N1-Cd1-O1W^{i}$	180.0 (1) 73.9 (1) 106.1 (1) 84.9 (1) 95.1 (1)	$01-Cd1-O1^{i}$ $01-Cd1-O1W$ $01-Cd1-O1W^{i}$ $01W-Cd1-O1W^{i}$	180.0 (1) 88.6 (1) 91.4 (1) 180.0 (1)

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots O2$	0.85(1)	1.67(1)	2.503(3) 2.721(3)	166 (4) 150 (2)
$O1W - H1W1 \cdots O1$ $O1W - H1W2 \cdots O2^{ii}$	0.83(1) 0.84(1)	1.96 (2)	2.766 (3)	160 (3)
$N2-H2\cdots O3^{iv}$	0.84 (1)	2.03 (1)	2.865 (3)	169 (3)

Symmetry codes: (ii) 2 - x, 1 - y, 1 - z; (iii) x, y, 1 + z; (iv) $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$.

The diffraction data were of sufficient quality to enable the refinement of all H atoms, which were located from a difference Fourier map. Their positional parameters were refined subject to O - H = N - H = 0.85 (1) Å and C - H = 0.95 (1) Å. The goodness-of-fit of 0.74 is somewhat low. The weighting scheme used was that suggested by *SHELXL*97 (Sheldrick, 1997), although a higher GoF could have been obtained using an alternative scheme with an additional term.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: isostructural with Mn analogue; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Ma, C.-B., Chen, F., Chen, C.-N. & Liu, Q.-T. (2003). Acta Cryst. C59, m516– m518.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.